男人女人差差差91_: 直击问题的深度,是否能激发更广泛的讨论?

男人女人差差差91: 直击问题的深度,是否能激发更广泛的讨论?_iPad84.81.26

更新时间: 浏览次数:991



男人女人差差差91: 直击问题的深度,是否能激发更广泛的讨论?_iPad84.81.26各观看《今日汇总》


男人女人差差差91: 直击问题的深度,是否能激发更广泛的讨论?_iPad84.81.26各热线观看2025已更新(2025已更新)


男人女人差差差91: 直击问题的深度,是否能激发更广泛的讨论?_iPad84.81.26售后观看电话-24小时在线客服(各中心)查询热线:



全国服务区域:玉树、抚顺、沧州、石家庄、漯河、吕梁、唐山、九江、红河、遵义、运城、临沂、中山、榆林、河源、阿坝、楚雄、平顶山、南昌、贵阳、阳泉、新余、南通、陇南、宿迁、钦州、襄阳、攀枝花、忻州等城市。










男人女人差差差91: 直击问题的深度,是否能激发更广泛的讨论?_iPad84.81.26
















男人女人差差差91






















全国服务区域:玉树、抚顺、沧州、石家庄、漯河、吕梁、唐山、九江、红河、遵义、运城、临沂、中山、榆林、河源、阿坝、楚雄、平顶山、南昌、贵阳、阳泉、新余、南通、陇南、宿迁、钦州、襄阳、攀枝花、忻州等城市。























_静态版56.79.11
















男人女人差差差91:
















达州市宣汉县、哈尔滨市巴彦县、南阳市卧龙区、平顶山市郏县、淮安市淮阴区、白山市抚松县、湖州市吴兴区遵义市湄潭县、澄迈县瑞溪镇、乐东黎族自治县佛罗镇、常州市新北区、鞍山市海城市、迪庆维西傈僳族自治县、吉安市新干县太原市小店区、潮州市湘桥区、宁德市屏南县、鞍山市海城市、白沙黎族自治县邦溪镇绵阳市游仙区、五指山市通什、龙岩市长汀县、蚌埠市怀远县、广西柳州市融安县、辽阳市宏伟区株洲市茶陵县、宁夏银川市贺兰县、长春市二道区、内江市市中区、珠海市香洲区、商丘市梁园区、鄂州市鄂城区
















荆州市公安县、淮北市烈山区、肇庆市四会市、温州市瓯海区、内蒙古呼和浩特市清水河县、东营市利津县、成都市双流区、宜春市万载县、广西梧州市龙圩区东方市三家镇、忻州市神池县、遵义市绥阳县、襄阳市枣阳市、宁夏固原市隆德县、滨州市滨城区台州市玉环市、镇江市句容市、儋州市和庆镇、商洛市柞水县、白山市抚松县、昭通市镇雄县、广西百色市乐业县、澄迈县仁兴镇、汕尾市海丰县、鄂州市华容区
















安康市汉滨区、南京市栖霞区、铜仁市松桃苗族自治县、汕尾市城区、吕梁市汾阳市、广西来宾市金秀瑶族自治县、清远市清新区中山市神湾镇、济南市天桥区、滁州市全椒县、本溪市溪湖区、攀枝花市西区、郑州市惠济区、威海市文登区、滨州市沾化区、白沙黎族自治县南开乡广西桂林市秀峰区、温州市文成县、河源市和平县、六安市霍邱县、毕节市织金县、吕梁市交城县、哈尔滨市道外区、文昌市东路镇、清远市连南瑶族自治县、长沙市宁乡市铜仁市思南县、中山市坦洲镇、长治市壶关县、澄迈县福山镇、玉溪市澄江市、阳江市江城区
















内蒙古巴彦淖尔市五原县、大理南涧彝族自治县、中山市东升镇、淮南市大通区、渭南市富平县、昆明市晋宁区、南京市六合区、宜昌市当阳市、镇江市丹徒区  内蒙古呼和浩特市玉泉区、文昌市龙楼镇、吉安市吉安县、乐山市夹江县、陇南市两当县、锦州市黑山县
















武汉市汉阳区、澄迈县大丰镇、天津市北辰区、重庆市奉节县、广西河池市环江毛南族自治县、昭通市鲁甸县、泸州市古蔺县、澄迈县桥头镇、内蒙古包头市石拐区连云港市灌云县、汕头市南澳县、蚌埠市禹会区、保山市昌宁县、白沙黎族自治县南开乡、酒泉市金塔县、天津市津南区、龙岩市武平县、南平市顺昌县、泰州市海陵区天水市麦积区、广西梧州市长洲区、九江市都昌县、滨州市阳信县、枣庄市市中区、延安市吴起县、娄底市双峰县南阳市卧龙区、德阳市什邡市、广西崇左市凭祥市、泸州市龙马潭区、铜川市王益区、广州市黄埔区、抚州市金溪县宁夏固原市彭阳县、陵水黎族自治县三才镇、陵水黎族自治县隆广镇、新乡市封丘县、永州市江华瑶族自治县、深圳市光明区、台州市天台县、南阳市西峡县、内蒙古通辽市科尔沁区昭通市鲁甸县、九江市共青城市、黑河市孙吴县、内蒙古锡林郭勒盟苏尼特左旗、果洛玛多县、太原市杏花岭区、普洱市澜沧拉祜族自治县
















阜阳市颍上县、昭通市威信县、佳木斯市汤原县、双鸭山市集贤县、德宏傣族景颇族自治州盈江县、汕头市潮阳区延安市宜川县、郴州市桂阳县、漳州市龙海区、遵义市仁怀市、常德市澧县、宜春市万载县、南昌市湾里区贵阳市息烽县、绍兴市越城区、铜陵市铜官区、南昌市青山湖区、广西百色市隆林各族自治县、安庆市太湖县、清远市英德市
















荆州市沙市区、乐东黎族自治县志仲镇、鞍山市岫岩满族自治县、商洛市商南县、萍乡市莲花县茂名市电白区、绥化市北林区、朝阳市朝阳县、内蒙古巴彦淖尔市乌拉特中旗、绥化市明水县、成都市简阳市、咸阳市彬州市、昆明市安宁市、怀化市芷江侗族自治县、厦门市翔安区甘孜理塘县、潍坊市诸城市、绵阳市梓潼县、宁夏固原市彭阳县、湘潭市湘乡市、汉中市洋县、淮北市濉溪县泸州市纳溪区、昆明市富民县、定安县龙门镇、大连市甘井子区、漳州市华安县、济宁市曲阜市、南充市蓬安县、漳州市南靖县




甘孜巴塘县、武汉市江汉区、天水市清水县、温州市苍南县、恩施州宣恩县、运城市夏县、吉安市遂川县、广元市剑阁县、赣州市南康区  宁德市古田县、保山市施甸县、大庆市肇源县、三明市明溪县、绍兴市柯桥区、鞍山市铁西区
















黑河市嫩江市、天水市秦州区、合肥市蜀山区、红河红河县、淮安市淮安区泰安市宁阳县、天津市河北区、内蒙古呼伦贝尔市满洲里市、宁德市蕉城区、双鸭山市集贤县、铜仁市玉屏侗族自治县




哈尔滨市五常市、商洛市柞水县、周口市商水县、绍兴市嵊州市、广西贺州市八步区、澄迈县加乐镇、东方市天安乡、三亚市吉阳区温州市永嘉县、宿迁市泗阳县、济南市历城区、广西柳州市城中区、昭通市镇雄县、达州市渠县、韶关市南雄市、宜春市铜鼓县济宁市微山县、汕尾市陆河县、眉山市东坡区、平凉市华亭县、赣州市会昌县、赣州市寻乌县、四平市公主岭市、临高县新盈镇、淮北市烈山区




荆门市东宝区、海西蒙古族德令哈市、洛阳市伊川县、安康市汉阴县、哈尔滨市道里区、大庆市让胡路区、上饶市弋阳县、广西南宁市武鸣区大连市甘井子区、甘孜巴塘县、金华市义乌市、内蒙古乌兰察布市集宁区、临夏东乡族自治县、三沙市西沙区、青岛市平度市、新乡市获嘉县、宜宾市翠屏区
















天津市河东区、甘孜巴塘县、永州市新田县、滁州市南谯区、大理大理市、日照市五莲县、商洛市柞水县、琼海市龙江镇、遂宁市大英县、临沧市临翔区宁波市海曙区、中山市三角镇、商丘市虞城县、泸州市古蔺县、凉山金阳县成都市青羊区、昆明市富民县、深圳市龙岗区、定安县龙湖镇、大连市甘井子区、阿坝藏族羌族自治州茂县、海西蒙古族天峻县、六安市裕安区平顶山市新华区、云浮市罗定市、宜昌市夷陵区、宜宾市珙县、延安市宜川县赣州市瑞金市、杭州市上城区、广西梧州市龙圩区、焦作市武陟县、广西南宁市江南区、上海市长宁区、营口市鲅鱼圈区、上饶市德兴市、海东市平安区、红河开远市
















东莞市石排镇、安顺市西秀区、广西河池市巴马瑶族自治县、周口市西华县、延边珲春市、吕梁市汾阳市黄冈市蕲春县、咸宁市崇阳县、蚌埠市淮上区、湘西州永顺县、太原市古交市、漳州市芗城区、西安市莲湖区、广西柳州市鹿寨县内蒙古呼和浩特市玉泉区、湛江市麻章区、广西柳州市柳城县、昆明市石林彝族自治县、丹东市振安区、景德镇市昌江区大兴安岭地区塔河县、大连市沙河口区、海东市乐都区、郴州市汝城县、武威市天祝藏族自治县、广州市白云区、淄博市淄川区广州市海珠区、郴州市临武县、上海市徐汇区、齐齐哈尔市昂昂溪区、沈阳市皇姑区、杭州市拱墅区、榆林市榆阳区、开封市通许县、潍坊市潍城区、河源市源城区

  在医疗数字化浪潮中,人工智能(AI)正加速进入临床实践。从影像识别、检验报告到辅助决策,AI正在重塑医生的工作方式,也在悄然改变着患者的就诊体验。AI能取代医生吗?面对这位“智能医生”,患者该如何理解它、使用它?它又如何成为医生的“眼睛”与“大脑”?

  近日,本报记者专访中国医学科学院阜外医院心律失常中心原主任、民盟中央卫生与健康委员会主任张澍,中国医学科学院肿瘤医院胸外科主任医师、民盟中央卫生与健康委员会副主任邵康,首都医科大学附属北京朝阳医院超声医学科副主任、农工党北京市委会联络工作委员会委员于泽兴,从心脏、肺部、超声诊断三个不同领域,探讨AI在临床中的角色与边界。

  张澍:AI是“标准答案”而人的健康是主观题

  当深度学习算法仅用0.8秒便可完成冠脉的三维重建,当神经网络在2000万份心电图中精准捕捉到异常波动,人工智能正在深刻改变心血管诊疗的基础逻辑。

  “AI的本质是一套算法,它建立在海量的医学知识和临床数据之上。”张澍介绍,在临床应用中,配备AI技术的影像设备能够在极短的时间内,从成千上万张图像中精准定位异常病变点,协助医生识别早期心脏结构的异常、冠状动脉的钙化以及心肌的肥厚。“这种高效的判断,甚至能够超越人眼。”

  在他看来,这正是人工智能的优势——速度快、处理量大、分析深入,最终目标是精准。然而,目前存在两种极端观点:一种认为AI已经能够取代医生,另一种则认为AI在医疗领域的应用并不可靠。张澍认为,通过大量案例和指南的“喂养”,AI能够迅速提供针对常见疾病和轻微病症的标准化诊断和建议。“你无法期望一个初出茅庐的年轻医生立即独立担当重任,然而,一个新入行的AI却能够整合众多资深医生的丰富经验,迅速提供标准化的解决方案。这使得AI成为辅助诊疗过程中的得力助手,尤其在处理常见疾病或那些已有标准化治疗方案的病例时,AI可充当‘虚拟医生’的角色。”

  然而,张澍强调,这种能力并不能无限制地扩展。人工智能在识别“共性”疾病方面表现出色,但人类的健康问题往往是一道“主观题”,其中包含着复杂且难以量化的“个性”因素。在处理复杂的心血管疾病,如心律失常时,AI技术能够协助医生快速识别潜在风险和心电图异常。然而,要深入理解疾病发展的全身性原因和动态变化过程,医生的临床经验和对患者个体状况的精准评估则显得尤为重要。“心脏并非独立运作的器官,其健康状况及功能表现受到心理状态、整体环境、生活习惯等多种因素的共同作用。”张澍指出。

  例如,焦虑的个体可能会经历胸闷和心悸等症状,这些不适感源于情绪对心脏功能的影响,而非心脏存在任何器质性问题。“即便AI技术再先进,目前它仍无法准确判断一个人是否正承受心理压力、睡眠障碍,或是家庭与环境的变动。目前我们所提供的训练数据远远不足,因为与‘心’相关的人的整体状态,往往不是仅凭临床‘指标+图像’就能完全阐释的。”张澍进一步补充道。

  目前,随着AI技术从后台支持走向前台服务,它不再局限于为医生提供辅助决策,而是开始直接与患者互动,参与初步的问诊过程,问题也开始逐渐显现。“部分患者对‘AI问诊’平台抱有过分的信任,认为通过回答几个问题、获取一份报告便能替代与医生的面对面咨询”,张澍提醒,尽管AI平台能够利用算法模型初步识别患病风险并提供标准化建议,但由于它缺乏对“人心”的真正理解,有时反而可能导致病情延误。

  “AI可以是一个优秀的‘起点’,但绝非‘终极诊断’系统。”张澍强调,特别是在心血管领域,许多疾病的早期迹象微弱到几乎难以察觉,例如偶尔的心悸、轻微的乏力,患者常常不以为意。然而,这些看似普通的症状背后,可能隐藏着严重的心律失常风险。这类复杂且隐蔽的病情,单凭一台AI、一次线上咨询,是无法实现精确识别的。

  如何把握AI在现代临床实践中的应用?张澍生动地描述道:“从传统的水银血压计到现代电子血压监测器,从听诊器到先进的可穿戴心电监测设备,医学领域一直在进步和演变。AI的融入,正是这一持续发展过程中的一个环节,而且它代表了一次真正的革命。”

  而对于患者而言,未来的医疗不是“人退AI进”,而是“人机共治”,将科技的速度与人性的温度融为一体,用AI的“理性判断”与医生的“经验推理”实现更精准的诊疗。医学AI的终极形态,并非取代人类在希波克拉底誓言下的深思,而是将机器数据的确定性转化为临床过程的潜在可能性,加速并优化诊疗流程。在这个人机共存的诊疗新时代,每一次心跳既是生物电信号,也是生命故事的独特旋律。

  邵康:AI是个“好学生”但还不是“好医生”

  作为深耕一线的资深胸外科专家,邵康对人工智能在医疗领域的应用有着深刻洞察:“AI就像个过目不忘的超级学霸,堪称医生的‘超级大脑’,是极具潜力的临床助手。”

  从最基础的病历书写、病情录入,到门诊中的影像识别、辅助诊断,再到初步治疗方案的建议,AI几乎可以覆盖医生工作的各个环节,邵康介绍:“它的最大优势是稳定、全面、不疲劳,能承担大量重复性工作。尤其在图像处理方面,AI的表现已经超过了许多经验尚浅的医生。”

  以肺结节筛查为例,传统阅片模式下,医生每看一个病人,需要手动翻阅300至400张 CT断层图像,不仅耗时耗力,还易出现视觉疲劳导致漏诊。而 AI凭借深度学习算法,可在数秒内完成全肺扫描,不仅能精准标注病灶位置,还能量化分析结节大小、密度、边缘特征等参数,并基于大数据模型给出初步良恶性概率评估。

  “以往对一位患者的影像判读需5至10分钟,现在 AI辅助下仅需数秒即可完成初筛。”邵康提到,这种效率的提升,显著优化了诊疗流程,让医生得以将更多精力投入到复杂病情研判与个体化治疗方案制定中。

  对于肺癌影像诊断的准确率,AI已能与经验丰富的主治医师比肩。临床实践中,医生只要输入准确的疾病相关信息,AI就可以根据指南、共识给出全面、准确的疾病诊疗方案供医生参考。

  邵康直言:“对于知识更新滞后的从业者而言,部分成熟的AI系统确实展现出更强的知识储备与分析能力。”然而,在肯定技术优势的同时,邵康反复强调 AI的临床应用边界:“医学的本质是针对‘生病之人’,而非仅仅是‘疾病’。”

  临床实践中,患者的基础状况、心理状态、生活环境等信息,往往是左右诊疗决策的关键变量。这些难以量化的“隐藏参数”,恰是 AI当前的技术盲区。

  于泽兴:超声不是“看图说话”那么简单

  当人们谈论人工智能对医疗行业的影响时,影像科常常被视为“最容易被AI替代”的领域,甚至有人断言,AI时代最先“下岗”的,将是影像科医生。

  “确实,从很早开始,就有团队尝试将AI引入影像诊断,尤其在放射科领域应用较多。”于泽兴介绍,像X光片、CT片这类标准化的平面图像,非常适合深度学习算法进行训练与识别,因此AI在这些领域的发展起步较快。

  不过,作为医学影像中的重要分支,超声科的情况却远比想象中复杂。于泽兴指出,虽然超声也是较早引入人工智能技术的科室之一,并积累了一定的探索经验,但要让AI真正扮演临床“决策者”的角色,还面临诸多挑战。

  在甲状腺、乳腺等结构清晰、图像稳定的部位,有的软件已经具备初步的辅助诊断能力,可以在医生操作过程中自动识别结节并评估其风险等级,其表现相当于一位年轻的主治医生。

  然而,这种应用目前仍局限于少数场景。“因为超声检查本质上是一个动态探查的过程,它不只是‘看图说话’,医生需要一边操控探头,一边观察屏幕上不断变化的图像,在瞬息之间捕捉关键线索。”于泽兴表示,这一过程中,医生的感知、操作和认知能力缺一不可,经验远比图像本身更为关键。

  “胖的人、瘦的人,器官的位置和形态不一样,超声医生扫查时的角度、范围、按压的力度都不同,需要实时调整、因人而异。”于泽兴说。“这些操作细节,都是AI目前难以胜任的。”

  那么,如果仅从图像分析来说,患者是否可以上传报告,在AI上获取“诊断建议”?

  于泽兴提醒,这种做法存在不小的安全隐患,比如甲状腺的某些结节,从图像上看与恶性肿瘤极为相似,AI可能会直接标红提示风险,“但如果结合患者既往的检查记录,可能会发现这些结节原本较大,随着时间逐渐缩小,是一种良性的退变结节。而这种需要综合病史、遗传史乃至病程变化作出的判断,是当前AI尚不具备的能力。”

  不过,应该看到的是,在目前超声医生资源紧张的背景下,无论是三甲医院还是基层机构,合理引入AI,将在一定程度上缓解人力压力。“技术无法取代医生的经验和判断,但它可以成为医生的工具,为他们加一双‘眼’、多一双‘手’,把专业力量用在更需要的地方。”于泽兴说。(完)(《中国新闻》报刘益伶报道) 【编辑:张子怡】

相关推荐:
  • 友情链接:
  • 义乌女老板对CNN霸气喊话美国客户 谢霆锋带儿子吃饭 关晓彤 鹿晗 福宝再次进入假孕状态 韩国140天3位代总统 谢霆锋王嘉尔隔空合唱 一招拿下射手座